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FOREWORD

This is a technical report of a study conducted by the Electric;l
Engineering Department of Auburn University under the auspices of the
Auburn Research Foundation toward the fulfillment of the requirements
prescribed in NASA Contract NAS8-5231. An analysis of a standard

phase~lock receiver employing differential phase feedback is presented.
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ABSTRACT

A phase lock receiver configuration which consists of a stan-
dard phase lock receiver employing differential phase feedback has
been proposed for use in the AROD program. The purpose of this
configuration is to produce a receiver which has a very stable local
oscillator while maintaining an output which tracks the input
signal dynamics.

The addition of differential phase feedback to the standard
phase lock receiver used in-this investigation results in a system
which can be analyzed as a Type 2 feedback control system. A
mathematical model of the system employing differential phase feed-
back is obtained by assuming input and output signals and observing
the effects of the various operations on the phase of the signals.

An analysis of the system is made using linear feedback control
theory. Root locus diagrams of the open loop transfer function are
obtained for various values of the system parameters. The initial
and final values of the system output and the voltage controlled
oscillator output are calculated. The digital computer program
utilized to calculate the response of the system to a step imput
of phase is presented in Appendix A. The calculated response of

the system is given in Appendix B.

[
He
e




iv
It is shown that differential phase feedback allows the use of

a very stable voltage controlled oscillator while maintaining an

acceptable tracking capability.
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I. INTRODUCTION
R. L. Lloyd and H. M. Summer

In recent years, the phase-lock receiver has found wide applica;
tions in the field of missile tracking and guidance. One important
application is in the field of missile range measurements. Range
measurements are made by comparison of transmitted and received
signals using techniques similar to those used in radar systems.

But unlike radar, the target, which may be either the missile or

a ground station, is an active device. The target contains a
transponder which receives and retransmits rather than reflecting
the signals. The basic component of the transponder is a phase-
lock receiver which is used to maintain the received signal and the
retransmitted signal phase coherent.

In this system which is a single loop feedback control system,
the output of a voltage controlled oscillator (VCO) is compared with
the received signal to produce an error signal that is used to correct
the frequency of the VCO until the two signals are phase coherent.
When the output of the VCO and the received signal are phase coherent,
the system is said to be phase locked.

There are many conditions which can cause a phase-lock receiver
to have a momentary loss of lock (VCO output and received signal not
phase coherent). One such condition is the high-noise environment

in which the receivers are normally used. In such an environment,
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it is desirable to have a stable VCO output to reduce the amount of
drift that can occur during the time the system is not in lock.

A narrow band VCO loop will produce a stable VCO but the system
will not be able to track rapidly changing input signals. A wide
band loop has the tracking capability but lacks a stable VCO. To
produce a system which has a good tracking capability and a stable
VCO, an additional feedback loop must be added. A system has been
proposed which is a standard phase-lock receiver that employs differen-
tial phase feedback as the additional feedback loop.

The addition of differential phase feedback to a standard phase-
lock receiver results in a system as depicted in Figure 1. Differen-
tial phase feedback is employed to produce a composite output signal
which tracks the system input dynamics when used in conjunction with
a very stable VCO.

If the input signal has an instantaneous and sustained change in
phase, the differential phase feedback loop produces a signal which
keeps the system in lock until the phase of the VCO can be adjusted
to correspond with the input phase. The time constants of the two
loops are adjusted such that the differential phase feedback loop is
in effect only while the VCO phase lags that of the input.

The purpose of this study is to analyze the system of Figure 1.
An analysis is performed which indicates that the desired system

performance can be obtained.
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Fig. 1. Block diagram of a phase locked receiver
employing differential phase feedback.




II. SYSTEM ANALOGUE

In the analysis of a system employing differential phase feedback,
it is desirable to obtain a mathematical model of the physical system
represented by Figure 1. This model can be obtained by assuming input
and output signals and observing the effectsg of the various operationé
upon the phase of the signals. For this analysis, assume that noise

free conditions exist and that the input signal is of the form

ey = Elsin[mAt + 0, + ein(t)], (1)

where ¢, is the phase of the input signal, Wy is the carrier fre-
quency, and ein(t) is a change in the input phase. Also assume that

the output signal is of the form

e, = E6cos[wBt + ¢B + eo(t)] , )

where ¢B is the phase of the output signal, wg is the carrier fre-

quency, and eo(t) is the change in the output phase due to ein(t)'

A necessary condition for phase lock to occur is that




W, = o,- 3)

o =9 4)

The phase detector output, ey, is equal to a constant times the dif-

ference in the phase of the two input signals. Thus, e, is given by

2

FE E
e, = _%_é {ein(t) - Go(t)} ; (5)

In Laplace transform notation, the phase modulator input signal

can be represented by

(6)

E.E
1

E4(8) = K, [1 - Tfl(S)J E,(S) = Ky [1 - Tfl(S)} —%—9 [ein(s)-eo(S)},

T is the trans-
fl

fer function of the low pass filter in the differential phase feed-

where Ki is the gain of the difference amplifier,

back loop and EZ(S> is the Laplace transform of e,-

In Laplace transform notation, the input to the VCO is of the form

E1Be
E (8) = Teg (S)Ep(8) = Ty (S) —5— [ein(s) - eo(s)}, )




where Teo is the transfer function of the low pass filter in the VCO

loop. The output of the VCO can be represented by
= t)_l E)
e E5cos[w3t +o+ ¢1( |

where ®y is the change in phase in the VCO output due to e,-

The phase modulator output is of the form

r
= o1(t) + o9(t
€ E6COSLwBt + ¢B + ¢1(t) 2( )J »

where E6 is equal to a constant times E5 and ¢

due t .
ue to e,

2

The value assumed for e6 must be equal to the value of eg given in

(9). Thus equation (2) and (9) can be equated to obtain

1 7
= t+6_+06 (t)]
E6cos [aét + ¢B + ¢1(t) + ¢2(t)J E6C°5 [wB + B 0( )J’

which reduces to

¢1(t) + ¢2(t)= Go(t) .

In Laplace transform notation, equation (11) becomes

¢1(S) + ¢2(S) = 90(5)

is the change in phase

(8)

9)

(10)

av |

(12)




The change in phase of the VCO output is proportiomal to the
integral of the 1nput Thus in Laplace transform notation, ¢1(S)

becomes

] |

K
0,(s) = fL.E 4(8) =2 TfZ(S) E1E6 [ein(s) - 90(5)] s 13)

]
where K2 is the constant of proportionality of the VCO. The phase
added to e5 in the phase modulator is directly proportional to ey

Thus, ¢2(S) becomes

9(S) =K E3(8) = KpKi [1 - Tfl(S)J E%Eé {ein(s) - 60(8)} , (14)

where K.p is the constant of proportionality &associated with the phase
modulator.
Substitution of equations (13) and (14) into (12) yields

Ky EEg
05(8) = G Tgp(8) —=2 [ein(s) - 90(5)] +

s
(15)
+ KK [1 - -rﬂ(s% %ﬁ [ein(s) - eo(S)] :
If K2 is defined as
R, =K, =2, (16)




and K_ as
1

g =k “1f6 (17)
1 pl

equation (15) becomes

(18)

8o (S) = KT, (5) [ein(S) - 8_(8) i + Kltl - 'rfl(S)J }Lein(s) - eo(s)].

-

The solution of equation (18) for eolein yields

= , (19)
©in(5) Ky 7
1+ 22 1, (8) + K [1 - Tfl(S)J
which is the general closed loop transfer function of the system.
The low pass filter in the VCO loop will be taken to be of the
form of a standard tracking filter. That is, Tgy is of the form
1 Sty + 1
Tgp(8) = 1 + 51, = 5T, . (20)

The low pass filter in the differential phaase feedback loop will be

taken to be of the form



T (8) = -1 . @21

Substitution of equations (20) and (21) into the general closed loop -

transfer function yields

_K_Z_[ST2+1]+K1[ sty ]
S St Srl + 1

6.(S)
0 - 2 (22)
6;..(8)
in K S + 1 S
1_’__2[____-:2 :'+K1 [_..___Tl ]
S ST9 Sty + 1
This equation is in the form of
o_(8)
[o] = G(S) , (23)
ein(s) 1 + G(8)
where
K2 STZ +1 Srl
B e———— N ———————— ———————— 2
G(5) S ST, +tK Sty +1 ’ 24)

and may be represented by the block diagram shown in Figure 2. Thus

a mathematical model has been obtained.
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ITII. SYSTEM ANALYSIS

A mathematical model of the system has been obtained and is
given in Figure 2. This model which employs multiple loop feed-
back may be analyzed using linear feedback control theory. The
root locus method, which is one of the methods available to analyze
feedback control systems, indicates the effect of gain changes and
the degree of stability of the system. 1In general, this information
along with the initial and final values of the system output is
sufficient for predicting the system performance.

The open loop transfer function of the system depicted in

Figure 2 is

K1[S3+K2 2 42 L.+_1_>s+__lf.2__]

8,(8) _ Ky Kj \t1 72 Ky7179 25)
0,(S
e(®) s2(s + L)
"1
A root locus diagram of the open loop transfer function of
(25) can be obtained if the numerator of the equation can be reduced
to a factored form.
Any polynomial of the form
PN+ aN-IPN-l + ... alP1 +a = 0, (26)

11
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' 4
can be factored with the aid of a root locus method. In this case,

the equation to be factored is

K K '
Sikg2,. 02 1_+L>s+ 2_ -0, 27)
K1 Ky V1 Ty Kit172

which is the numerator term of equation (25). Equation (27) can be

rewritten as

K
5oty ]
1+ = ;3 2 12- _o. (28)

The numerator of the second term of equation (28) can be reduced to the

factored form

% 2 T
1+ =0
$3

, (29)

which is in the standard form utilized in the root locus method of
control system analysis. The root locus diagram of this equation is
a plot of the roots of equation (27) as a function of Ky/K;. The

values chosen for Ty and T, are relative quantities. Therefore,

2

only the ratio of t, to T, is of importance since the values may

1

be scaled to fit an actual system. For convenience,the radian
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bandwidth of the VCO loop, %— , will be fixed at Ty = 1 and root

locus diagrams of equation (29) will be constructed for various values
of the radian bandwidth of the differential phase feedback loop, %I'.
Since the shape of the diagram is not affected by the value of 7,

it is necessary to choose only three values to include all possible
forms of the diagrams. The values chosen for T, are 0.1, 1.0 and 10.0
and represent bandwidths of the differemtial phase feedback loop |
which are less than, equal to, and greater than the bandwidth of the
VCO loop. These diagrams are given in Figure 3 and represent the
roots of gquation (27) as a function of7K2/K1. From each diagram it
can be seen that there exist three possible combinations for the
roots: one real and two complex roots, all real with two equal roots,
and all real and unequal roots. The form of the roots is determined
by the value of K2/K1.

Now that the factors of the numeratér of equation (25) have been
determined, a root locus diagram of the open loop transfer function
as a function of K1 can be constructed. Since there are three
possible combinations of the roots of equation (27) for each Ty
three root locus diagrams of the open loop transfer are made for
each value of 11- These diagrams are given in Figures 4 through 6.

If the system is to be stable for all values of gain, K;, it
is necessary to have all the zeroes and poles of equation (25) in
the left half S-plane. Since this condition is always fulfilled by

the poles, it is only necessary to be concerned with the value of the

zeroes. From the root locus diagrams used to factor the numerator of




14

T
1
7 = 01
K
A =2_.37.0
Ky
c
(4) B 5’%:42.5 *—
K1 30
C 2:48.2
Ky -
T
L <10
T2
% A
A =2.-5.75
Ky
K ¢
(B) B -2 =6.75 @——v—eo—
K, , '
K
c =2.-3.0
K
711000
T2
K N
A =2-3.70
K1
Ko LA
(©) B -2 =4.28 3
K, ‘
c X2 _4.8
Ky

Fig. 4. Root locus diagram of equation (29).
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equation (25) it can be seen that there exists a minimum value of the
ratio of gains K2/K1 to insure that all zeroes have negative real parts.
This required ratio is a function of 71/¢2 and decreases as the ratio
of 11/72 increases. Thus for ratios of K2/K1 greater than the re-
quired minimum, the system is unconditionally stable.

from the root locus diagrams of open loop transfer function, it
can be seen that ratios of rllrz less than one have a greater effect
upon the response time of the system than do ratios greater than one.
The root locus diagram for T = 1.0 and Ty = 10.0 are essestially the
same, while the diagram for T = 0.1 is moved away from the jw axis thus
decreasing‘the damping times. Thus for.a fast response time of the
VCO, a small ratio of T, /T is needed.

2
The initial value of the time response of any system is defined

by

Lim f£(t) = Lim SF(S). (30)
te O S o

Hence, for a step input the initial value of eo(t) is given by

(31)
K
01nK1 [33 B Kz 1>s+ 2 ]
Lim ©_(t) = Lim K1 T2 K1‘1"2 ,

te0 S e x
oyl 2ﬁ< 2]
T Ky "'1 Ty K 71T

where 8in is the magnitude of the step input. Equation (31) reduces to
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K
1 : (32)

+
0 H e—— O,
eO( ) ]_+K1 in

1 must be large for the initial value of eo(t) to be

within a small percentage of 6, .

Therefore, K
For So(t) to be within 5% of
ein, K1 must be greater than or equal to 19.

The final value of the time response is defined by

Lim £(t) = Lim SF(S) . (33)
t S0
Hence, the final value of eo(t) is given by
(34)
r K / N K
%inkK1 | §3 4 =2g% 4 -E—Z Lilsy ——1——]
Lim 6_(t) = Lim L K1 1 \T] T3/ KTy,
t & ® S -0 / .
K K K
sqer L) Kl[sa  Rg2 z(.l_ + 1)+ _._1_] ,
N S A KT172
which reduces to
(35)

Since the output of the VCO is of importance in determining
the stability of the VCO, it is necessary to calculate the initial

and final values of the VCO output in addition to those of the

system output.
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The initial and final values of the VCO output, ©_.. , can be
calculated if a function relating evco to the system input can be
determined. This function can be obtained from Figure 7, where this
figure is obtained from Figure 2 by block diagram manipulation.

Hence, the closed loop transfer function of the VCO is

2 ! ) )
5° + +=)s+
Sveo(® _ Sl VT . @)
6. (S
in(®) (x1+1)s3+(1<2+-1—)sz+x2<l-+l->s+ %2
't’l T1 'rz 1'11-2
For a step input, equation (36) becomes
2 1 .1\, R
e —— — . Sm—— . 37
in [xzs +K,y . + % + "1"2} 37
Oycol8) = X :
3 1 4o2 1 1 ) 2
s[(K1+1)s + (K, + =)S% + -_+_.)s+-—-}
KZ 1'1 K2 Tl T2 “I.’l'l'z

Substitution of equation (37) into equation (30) yields the

initial values of O (t) as

VCO

evco(o+) = 0. (38)

Substitution of equation (37) into equation (34) yields the

final value of © (t) as
vco
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evcoox) B ein'

The information contained in the root locus diagrams and the
initial and final values of the system response indicates that the
desired system performance can be obtained. That is, the composite
output, eo, tracks the input within a percentage determined by the
value of K, while the output of the VCO, ©y., is zero initially and
reaches the value of the input only if the input remains constant
for a period of time determined by the loop parameters.

The complete time response for ©, and evco can be calculated by
obtainingbfunctions for 6, and evco in Laplace transformation nota-
tion and determining the inverse Laplace transform.

For a one radian step input, GO(S) is given by

1(153+K52+K L +—-—1>s+ k2 (40)
2 2\1y Ty T o
o.(s) =| 1 1.2
© 5 3 1 a2 1,1 X
(K, + 1)S +(K2+——)S+K =+ )5 +
1 T 1 T2 T1 Ty

The denominator of this equation can be arranged in factored form

and the numerator rearranged to obtain

1 + As + Bs? + cs3 ,

S(1 + TIS) (1 + TZS) 1+ T3S)

6,(8) =

(39)

(41)
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A+,

where A T.T
12 'ry 1

o
1

172 »

o]
[

= 117K /Ky

)
I

1/R1 :

e
It

2 = 1%

=3
fl

1/R3
and Rl’ R,, and Rq are the roots of the denominator of equation
(40). The inverse Laplace transform of equation (41) is

3 2
7.3 - AT,2 + BT, - C _;
o (t) =1 - —L 1 1 ot/

Ty(Ty = T(Ty - T3)

3 2 3 5
To = ATp + BTy - c e-t/TZ_ T3® - AT3“ + BT3 - C
Tp(Ty = TP (T3 - T3) T3(T3 = T1)(T3 - T3)

-t/T
e 3.

eo(t) was calculated with the aid of a digital computer for the
system as represented by each root locus diagram. The computer pro-

gram is given in Appendix A. The values of RTy, RTZ, and RT3 were

(42)




e —— e
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determined from each diagram for K1 = 20. Figure 8 is a typical
response for eo(t), with the complete results given in Appendix B.

The output of the VCO, evco’ for a one radian step input is

2 1 .1 Ky (43)
KpS2 + K ﬁ+r—)s+'r1-r2
1 Ky

3 1 ya3 1l .1
(Ry + 1)s? + (X +-;q?s + 1(2(_rl + =)8 +

b4

(0]
~~
o
o’
[
9]

T2 T1T2

which can be rewritten as

2
S(1 + T,;5)(1 + T,8)(1 + Ty5)

evco(s) =

The inverse Laplace transform of equation (44) is

2

(T = Tp)(T) - T3)

-t/T
- - 1
evco(t) =1 e

(45)
T,2 - AT, + B /T T2 - AT, + B /T
2 2 ST . 3 3 /T3
(T2 - T1)(Tp - T3) (T3 - TP (T3 - Tp)
This equation was programmed on a digital computer to give 8.,
as a function of time for the same cases as O . The response for
e for each case is given in the same figure with the corresponding

vCco

response of © .
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Fig. 8. Typical response of 90 and evco with a one radian step input.
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From the output response curves given in Figure B-1 through
B-9, it can be seen that the response time decreases as the ratio
of 11/12 decreases as was expected. As the value of K2/K1 increases?
the value of the overshoot in the VCO output decreases while the
response time is not changed by an appreciable amount. As predicted,
the response of the system output is within 5% of the input at all

times. Thus the desired system performance has been obtained.




IV. CONCLUSION

It has been shown that the addition of differential phase feed;
back to a standard phase-lock receiver results in a system which has
an output that tracks the input signal dynamics while maintaining
a stable VCO. The ability of the system to track the input signal
is dependent upon the value of Ky Equation (3%) indicates that K;
should be large to minimize the initial error caused by a change in

the input signal. The stability of the VCO is dependent upon the

ratio K2/K1 and‘rlltz.

If the value of K2/K1-is greater than the minimum required to
insure unconditional stability, then the ratio, 71/12, is the predo-
minate control on the response time of the WCO. Figures B-1 through
B-9 indicate that the ratio, K2/K1, has little effect upon the response
time.

Since the ability of the system to track and the stability of the
VCO are dependent upon different system parameters, the two may be
adjusted independently. It can be shown that this is not true in the
case of the standard phase-lock receiver. The two system charact-.
teristics are dependent upon the same parameters. A standard receiver
which has the desired tracking capability will not have a stable VCO
while the system with a stable VCO will not track rapidly changing
input signals. Therefore to obtain the desired characteristics,
another type system, such as the system employing differential phase

feedback, must be used.

27
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APPENDIX A
DIGITAL COMPUTER PROGRAM USED TO CAICULATE
OUTPUT RESPONSE OF THE SYSTEM
TABLE 1

DEFINITIONS OF COMPUTER PROGRAM SYMBOLS

PROGRAM SYMBOL - VARIABLE
T1 T
Gl Kl
G2
K2
TC1 T
1
TC2 '1‘2
TC3 T3
RT1 Rl
RT2 R2
RT3 R3
THETAO eo
THETAV 2]
vco
T(I) t(time)
ALPHA Real part of
R1 and R2
BETA Imaginary part of
R1 and Ry

29
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IR 704C FCOGRIRAN IV DIGITAL COMPUTER PROGRAM
TU CALCULATE CUTPUT GF A PHASE LOCK RECEIVER
EMPLCYING CIFFERENTIAL PHASE HEEDBACK

(nEelgl

CIVMENSICN T(50), X{50), Y(50), 2{(50)
TINE = C.
LG 5 1=1,50
TLI) TIME
S TIMt TIME + 0.02
Gl = 20.
T2 = 1.0
CC 61 L=1,3
CO 21 M=1,2
READ (5,100) G2+ T1, ALPHA, BETA, RT3
1CC FORMAT (5F1C.0)
WRITE (6,150) Gly T1, G2+ T2, ALPHA, BETA, RT3
15C FORNAT(////71H 5 3HGI=yF4.1,4Xe3HTL=,Fb4.194Xs3HG2=
1 FS.1saXe3HT2=24F4.1yaX6HALPHA= yF T.444X,5HBETA=,
2 Fl.bs4X44HRT3=,F6.4 /)
RE = ALPHA / (ALPHAs®?2 + BtTAs«2 )
XI = — BETA = RE / ALPHA
TC3 = 1. / RT3
T1 ¢ T2 @« { 1. / Tl ¢« 1. /7 T2 )
Tl e T2
Gl = Tle T2 / G2

"ou

oW

>

TEONI NG,

Dl = REme3-AsRE®22+(A-3,.#RE)aX]#22+B«RE-C
D2 = 3.#REse2aX]-X]#s3-2_ sA=RE«X[+BeX]

D3 = X1ea2e(2,#TC3 — 4.%RE)

D& = 2.%REns2aX1-2.#X[e23-2 «RE«X][=T(3

DS = —RE/{(REwe2+X][#22)

D6 = XI=DS/RE

D7 = D1#=D3+4D2+«D4

D8 = D2«03-Cl+D4

D9 = 2./7{D3sa2+4D4us2)

D10 = (TC3%e3—-AaTC3%u24B2TC3-C)/(TCA(TC3-RE)wu2+X]
1 se2s7(C3)

WRITE (6,175) D5, D6,y D7, D9, D10
175 FCRMAT (  1Xy4HDS =4E16.795X,4HD6 =,E16.795X94HD7 =
1 9E16.T¢5X94HD9 =9E16.T795X¢5HD10 =,E16.7 /)
DO 15 I=1,31
X{I) = —D9«EXP(D5#T(1))1#(DT7=COS{D6«T(1))+DB#SIN(Db6>
1 T{I)))
IF(ABSI{X(I)).LT..0001) GO TO 17
15 CONTINUE
17 CALL ZERC (X(I),X{31))
CC 16 J=1,31
Y(J) = —-D10#EXP(-RT3=T{J))
IF(ABS(Y(J))aLT..0001) GO TU 18
16 CCKNTINUE




31

PRCGRAM CUNTINUED

18 CALL ZERC (Y(J),Y(31))
D0 10 X=1,31
THETAD = 1.0 ¢+ X{K) ¢ Y(K)
10 wRITE (6,200) T(K), THETAO
200 FORMAT(1H +15X94H T =4F4.1420X,8HTHETAOD =,F7.4)

€l = REse2-X]se2-AsRL+B
€2 = 2.#RE*X]I-AsXI]

4 = 2.RE#X][-2.#X[+TC3
E3 = ~2.eX]xe2

£S5 = DS

€6 = D6

ET = E1l=E3+E2+E4

E8 = E2+E3-El*E4

£E9 = 2./(E3en2+t4un2)

E1C = {TC3##2-A=TC3+B)/{(TC3-RE)ew2¢X][0e?)

WRITE (6,185) €5, E6y ETy E9, EILO
185 FORMAT (//1XyGHEDS =,E16.T95Xe4HEG =gE16.T795X4HET =

1 ¢El6.Ts5Xe4HED =9b16.T+5X+5HELQ =,E16.7 /)

D0515 [=1,31

X{I) = -ESeEXP(ES*T(I))e(ET«COS(E6*T(]))+EB#SIN(FbO

1 7{1)))

IF(ABS(X{I)).LT..0001) GC TOS17
515 CONTINUE
517 CALL ZERD (X{1).X(31))

DO516 J=1,31

Y{J) = -E1O«EXP(—~RT3«T7(J))

IF(ABS(Y{J)).LT..0001) GO TO 518
516 CONTINUE
518 CALL ZERO (Y{J),YI(31))

00510 K=1,31

THETAV = 1.0 + X{K) + Y(K)
510 WRITE (64300) T(K), THETAV
21 CONTINUE
300 FORMAT (1H 415Xy4H T =,F4.1920XyBHTHETAV =,FT7.4)

REAL (5,100) G2,y Tle RTly RT2, RT3

WRITE (6,250) Gly Tl,y G2, T2, RT1l, RT2, RT3
250 FORMAT(//7/71H o 3HGL=yF4.1+4X43HT1=yF4.194Xs3HG2=,

1 F5.1.4X,3HT2='I~4.l.4X.4HRTl=,F7.4.4X,4HRT2=.F7.4.

2 4X4HRTA=,F1.4)

C =Gl » Tle T2 / G2

TCl = 1./RT1
TC2 = 1./RT2
TC3 = 1. /7 RT3

He = (TClew3-AeTCLlua2484TCL-C)/(TCL=(TCI-TC2)s
1 {(1C1-7TC3))
HS = (TC24e3-A#T7C2#42+82TC2-C)/(TC2#{TC2-TCl)=
1 (TC2-TC3))
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PRCGRAM CONTINUED

H6 =

1 (TC3-TC2))

WRITE (64275) H4, HSy H6

(TC30e3-AuTC3%a24B+TC3-C)/(TC3&(TC3-TC1)+

275 FORMAT (/lX,4HH4 =,E16.7'5X.4HH5 =,E16.?'5X'4HH6 =9

1

25
22

26
23

27
24

20

285 FORMAT (//1Xe4HHT =4E16.795Xe4HHB =,E16.7+5Xy4HHT

1

525
522

526
523

527
524

520

El6.7T /)
00 25 1I=1,31
X{I) = —H&GwEXP(-RT1=T(I))
IF{ABSI{X{I)).LT..0001) GO
CONTINUE
CALL ZERC (X(I),X({31))

00 26 J=1,31

Yid) ~ES5#EXP{-RT2+T{J))
IF{ABS({Y{J)).LT..C001) GO
CONTINUE

CALL ZERC (Y{J).Y(31))

BC 27 K=1,31

Z{K) = —HE#EXP{-RT3«T({K))
IF{ABS{Z{K)).LT..0001) GO
CONTINUE

CALL ZERO (Z(K)42(31))

DC 20 N=1,31

THETAQ =
WRITE (6,200) T(N)
HT =
H8
H9
WRITE (64285) HT,

([ ]

HB, H9
'E16o7 / )

L0525 1=1+31

X(1) = —HT«EXP(-RT1+T(1))

IF(ABS(X{I}).LT..0001) GO

CONTINUE

CALL ZERO (X(I),X(31))

DC526 J=1,31

Y{J) ~HB=EXP{-RT2+T(J))

IFLABSIY(J)).LT..00C1) GO

CONTINUE

CALL ZERQO (Y({J),Y(31))

0527 K=1,31

Z{K) -HO=EXP(-RT3#T(K))

IF(ABS({Z(K)).LT..0001) GO

CONTINUE

CALL ZERO (Z(K),Z(31))

D0S20 N=1,31

THETAV =

WRITE (6,4300) T(N)

-—
=

T0 22

10 23

T0 24

1.0 # X{N) + Y(N) + Z(N)

+ THETAO
(TClwu2-AsTC14B)/((TC1-TC2)+{(TC1-TC3))
(TC2#22-A=TC24B) /((TC2-TC1)=(TC2-YC3))
(TC3=w2-AaTC34B) /{(TC3-TC1)#(TC3-TC2))

10522

10523

10 524

1.0 + X{N) + Y{N) + Z{(N)
» THETAV
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PRCGRAM CONTINUED

CCNTINUE

STCP

ENC

SUBRCUTINE ZERO (A(N),A(K))
CIMENSICN A(K)

A{1) = 0.

RETURN

ENC




APPENDIX B

OUTPUT RESPONSE OF ©_ AND 6, FOR
A ONE RADIAN STEP INPUT WITH T, = 1.0 and K; = 20.0
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Fig. B-1. Response of 6, and.6 __ with 71/12=0.1 and K2/K1=37.0.
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Fig. B-2. Response of ©_  and 6 with Tl/T2=O.1 and K,/K;=42.5.
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Fig. B-3. Response of 6 an§ 0 co With 11/T2=0.1 and K,/K;=48.2.
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Fig. B-4. Response of 9, and 8., with 71/1,=1.0 and K2/K1=5.75 .
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Fig. B-5. Response of 8, and 8,., with T1/T2=1.C and K2/K1=6.75.
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Fig. B-6. Response of 6, and 6_ with 11/12=1.0 and K,/K;=8.
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Fig. B-7. Response of 6 and 6 o with 17/7,=10.0 and K2/K1=3.7.
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Fig. B-8. Response of o, and ?vco with 11/12=10.0 and K2/K1=4.25.
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Fig. B-9. Response of eo and evco with TI/T2=10.0 and K2/K1=4.82.



